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diffractive deep neural networks
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Yi Luo1,2,3, Mona Jarrahi1,3, Aydogan Ozcan1,2,3,4†

Deep learning has been transforming our ability to execute advanced inference tasks using
computers. Here we introduce a physical mechanism to perform machine learning by
demonstrating an all-optical diffractive deep neural network (D2NN) architecture that can
implement various functions following the deep learning–based design of passive
diffractive layers that work collectively. We created 3D-printed D2NNs that implement
classification of images of handwritten digits and fashion products, as well as the function
of an imaging lens at a terahertz spectrum. Our all-optical deep learning framework can
perform, at the speed of light, various complex functions that computer-based neural
networks can execute; will find applications in all-optical image analysis, feature detection,
and object classification; and will also enable new camera designs and optical components
that perform distinctive tasks using D2NNs.

D
eep learning is one of the fastest-growing
machine learning methods (1). This ap-
proach uses multilayered artificial neural
networks implemented in a computer to
digitally learn data representation and ab-

straction and to perform advanced tasks in a
manner comparable or even superior to the per-
formance of human experts. Recent examples in
which deep learning hasmademajor advances in
machine learning includemedical image analysis
(2), speech recognition (3), language transla-
tion (4), and image classification (5), among others
(1, 6). Beyond some of these mainstream appli-
cations, deep learning methods are also being
used to solve inverse imaging problems (7–13).
Herewe introduce an all-optical deep learning

framework in which the neural network is phys-
ically formed by multiple layers of diffractive
surfaces that work in collaboration to optically
perform an arbitrary function that the network
can statistically learn.Whereas the inference and
prediction mechanism of the physical network
is all optical, the learning part that leads to its
design is done through a computer.We term this
framework a diffractive deep neural network
(D2NN) and demonstrate its inference capabil-
ities through both simulations and experiments.
Our D2NN can be physically created by using
several transmissive and/or reflective layers (14),
where each point on a given layer either trans-
mits or reflects the incomingwave, representing
an artificial neuron that is connected to other
neurons of the following layers through optical
diffraction (Fig. 1A). In accordance with the
Huygens-Fresnel principle, our terminology is

based on each point on a given layer acting as a
secondary source of a wave, the amplitude and
phase of which are determined by the product
of the input wave and the complex-valued trans-
mission or reflection coefficient at that point [see
(14) for an analysis of the waves within aD2NN].
Therefore, an artificial neuron in a D2NN is con-
nected to other neurons of the following layer
through a secondary wave modulated in ampli-
tude and phase by both the input interference
pattern created by the earlier layers and the local
transmission or reflection coefficient at that point.
As an analogy to standard deep neural networks
(Fig. 1D), one can consider the transmission or
reflection coefficient of each point or neuron as
amultiplicative “bias” term, which is a learnable
network parameter that is iteratively adjusted
during the training process of the diffractive net-
work, using an error back-propagation method.
After this numerical training phase, the D2NN
design is fixed and the transmission or reflec-
tion coefficients of the neurons of all layers are
determined. This D2NNdesign—once physically
fabricated using techniques such as 3D-printing
or lithography—can then perform, at the speed
of light, the specific task for which it is trained,
using only optical diffraction and passive optical
components or layers that do not need power,
thereby creating an efficient and fast way of
implementing machine learning tasks.
In general, the phase and amplitude of each

neuron can be learnable parameters, providing
a complex-valued modulation at each layer,
which improves the inference performance of
the diffractive network (fig. S1) (14). For coher-
ent transmissive networks with phase-only mod-
ulation, each layer can be approximated as a thin
optical element (Fig. 1). Through deep learning,
the phase values of the neurons of each layer of
the diffractive network are iteratively adjusted
(trained) to perform a specific function by feed-
ing training data at the input layer and then
computing the network’s output through optical

diffraction. On the basis of the calculated error
with respect to the target output, determined by
the desired function, the network structure and
its neuron phase values are optimized via an error
back-propagation algorithm, which is based on
the stochastic gradient descent approach used
in conventional deep learning (14).
To demonstrate the performance of the D2NN

framework, we first trained it as a digit classifier
to perform automated classification of hand-
written digits, from 0 to 9 (Figs. 1B and 2A). For
this task, phase-only transmission masks were
designed by training a five-layer D2NN with
55,000 images (5000 validation images) from the
MNIST (Modified National Institute of Stan-
dards and Technology) handwritten digit data-
base (15). Input digits were encoded into the
amplitude of the input field to the D2NN, and
the diffractive networkwas trained tomap input
digits into 10 detector regions, one for each digit.
The classification criterion was to find the de-
tector with themaximumoptical signal, and this
was also used as a loss function during the net-
work training (14).
After training, the design of the D2NN digit

classifier was numerically tested using 10,000
images from theMNIST test dataset (whichwere
not used as part of the training or validation
image sets) and achieved a classification accu-
racy of 91.75% (Fig. 3C and fig. S1). In addition to
the classification performance of the diffractive
network, we also analyzed the energy distribu-
tion observed at the network output plane for the
same 10,000 test digits (Fig. 3C), the results of
which clearly demonstrate that the diffractive
network learned to focus the input energy of
each handwritten digit into the correct (i.e., the
target) detector region, in accord with its train-
ing.With the use of complex-valuedmodulation
and increasing numbers of layers, neurons, and
connections in the diffractive network, our classi-
fication accuracy can be further improved (figs.
S1 and S2). For example, fig. S2 demonstrates a
Lego-like physical transfer learning behavior for
D2NN framework, where the inference perform-
ance of an already existing D2NN can be further
improved by adding new diffractive layers—or, in
some cases, by peeling off (i.e., discarding) some
of the existing layers—where the new layers to
be added are trained for improved inference
(coming from the entire diffractive network: old
and new layers). By using a patch of two layers
added to an existing and fixedD2NNdesign (N =
5 layers), we improved our MNIST classification
accuracy to 93.39% (fig. S2) (14); the state-of-the-
art convolutional neural network performance
has been reported as 99.60 to 99.77% (16–18).
More discussion on reconfiguringD2NNdesigns
is provided in the supplementarymaterials (14).
Following these numerical results, we 3D-

printed our five-layer D2NN design (Fig. 2A),
with each layer having an area of 8 cm by 8 cm,
followed by 10 detector regions defined at the
output plane of the diffractive network (Figs. 1B
and 3A). We then used continuous-wave illumi-
nation at 0.4 THz to test the network’s inference
performance (Figs. 2, C and D). Phase values of
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each layer’s neurons were physically encoded
using the relative thickness of each 3D-printed
neuron. Numerical testing of this five-layerD2NN
design achieved a classification accuracy of 91.75%
over ~10,000 test images (Fig. 3C). To quantify the
match between these numerical testing results
and our experiments, we 3D-printed 50 hand-
written digits (five different inputs per digit),
selected among the same91.75%of the test images
for which numerical testing was successful. For
each input object that is uniformly illuminated
with the terahertz source, we imaged the output
plane of the D2NN to map the intensity distri-
bution for each detector region that is assigned
to a digit. The results (Fig. 3B) demonstrate the
success of the 3D-printed diffractive neural net-
work and its inference capability: The average
intensity distribution at the output plane of the
network for each input digit clearly reveals that
the 3D-printed D2NNwas able to focus the input
energy of the beam and achieve a maximum sig-
nal at the corresponding detector region assigned
for that digit. Despite 3D-printing errors, possible
alignment issues, and other experimental error
sources in our setup (14), thematch between the
experimental and numerical testing of our five-
layer D2NNdesignwas found to be 88% (Fig. 3B).
This relatively small reduction in the perform-

ance of the experimental network compared to
our numerical testing is especially pronounced
for the digit 0 because it is challenging to 3D-
print the large void region at the center of the
digit. Similar printing challenges were also ob-
served for other digits that have void regions;
e.g., 6, 8, and 9 (Fig. 3B).
Next, we tested the classification performance

of D2NN framework with a more complicated
image dataset—i.e., the Fashion-MNIST dataset
(19), which includes 10 classes, each representing
a fashion product (t-shirts, trousers, pullovers,
dresses, coats, sandals, shirts, sneakers, bags, and
ankle boots; see fig. S3 for sample images). In gen-
eral, for a coherently illuminated D2NN, we can use
the amplitude and/or phase channels of the input
plane to represent data to be classified or processed.
In our digit classification results reported earlier,
input objects were encoded by using the ampli-
tude channel, and to demonstrate the utility of
the phase channel of the network input, we en-
coded each input image corresponding to a fash-
ion product as a phase-only object modulation
(14). Our D2NN inference results (as a function of
the number of layers, neurons, and connections)
for classification of fashion products are sum-
marized in figs. S4 and S5. To provide an example
of our performance, a phase-only and a complex-

valued modulation D2NN with N = 5 diffractive
layers (sharing the same physical network dimen-
sions as the digit classification D2NN shown
in Fig. 2A) reached an accuracy of 81.13 and
86.33%, respectively (fig. S4). By increasing the
number of diffractive layers to N = 10 and the
total number of neurons to 0.4 million, our
classification accuracy increased to 86.60% (fig.
S5). For convolutional neural net–based standard
deep learning, the state-of-the-art performance
for Fashion-MNIST classification accuracy has
been reported as 96.7%, using ~8.9million learn-
able parameters and ~2.5 million neurons (20).
To experimentally demonstrate the perform-

ance of fashion product classification using a
physical D2NN, we 3D-printed our phase-only
five-layer design and 50 fashion products used
as test objects (five per class) on the basis of the
same procedures employed for the digit classi-
fication diffractive network (Figs. 2A and 3),
except that each input object information was
encoded in the phase channel. Our results are
summarized in Fig. 4, revealing a 90% match
between the experimental and numerical testing
of our five-layer D2NN design, with five errors
out of 50 fashion products. Comparedwith digit
classification (six errors out of 50 digits; Fig. 3),
this experiment yielded a slightly better match
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Fig. 1. Diffractive deep neural networks (D2NNs). (A) A D2NN comprises
multiple transmissive (or reflective) layers, where each point on a given layer acts
as a neuron, with a complex-valued transmission (or reflection) coefficient. The
transmission or reflection coefficients of each layer can be trained by using deep
learning to perform a function between the input and output planes of the
network. After this learning phase, the D2NN design is fixed; once fabricated or
3D-printed, it performs the learned function at the speed of light. L, layer. (B and
C) We trained and experimentally implemented different types of D2NNs:
(B) classifier (for handwritten digits and fashion products) and (C) imager.

d, distance. (D) Comparison between a D2NN and a conventional neural network
(14). Based on coherent waves, the D2NN operates on complex-valued inputs,
with multiplicative bias terms.Weights in a D2NN are based on free-space
diffraction and determine the interference of the secondary waves that are phase-
and/or amplitude-modulated by the previous layers. “o” denotes a Hadamard
product operation. “Electronic neural network” refers to the conventional neural
network virtually implemented in a computer.Y, optical field at a given layer;
Y, phase of the optical field; X, amplitude of the optical field; F, nonlinear rectifier
function [see (14) for a discussion of optical nonlinearity in D2NN].
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between the experimental and numerical test-
ing results (despite themore challenging nature
of Fashion-MNIST dataset), perhaps because we
used the phase channel, which does not suffer
from the challenges associatedwith 3D-printing
of void regions [such as in digits 0, 6, 8, and 9
(Fig. 3)], to encode input image information for
fashion products.
Next, we tested the performance of a phase-

only D2NN, composed of five 3D-printed trans-
mission layers to implement amplitude imaging
(Fig. 2B). This network was trained using
the ImageNet database (21) to create a unit-
magnification image of the input optical field
amplitude at its output plane (~9 cm by 9 cm)—
that is, the output image has the same physi-
cal size as the input object (14). As illustrated in
fig. S6, A and C, the trained network initially
connects every amplitude point at the input
plane to various neurons and features of the fol-

lowing layers, which then focus the light back
to a point at the output (i.e., image) plane, which
is, as expected, quite different than the case of
free-space diffraction (i.e., without the presence
of the diffractive network), illustrated in fig. S6,
B and D.
After training and blind testing, which served

to numerically prove the imaging capability of
the network (figs. S6 and S7), we then 3D-printed
this designed D2NN. Using the same experimen-
tal setup shown in Fig. 2, C andD, we imaged the
output plane of the 3D-printed D2NN for various
input objects that were uniformly illuminated by
continuous-wave radiation at 0.4 THz. Figure S8
summarizes our experimental results achieved
with this 3D-printed D2NN, which successfully
projected unit-magnification images of the in-
put patterns at the output plane of the network,
learning the function of an imager, or a phys-
ical auto-encoder. To evaluate the point spread

function of this D2NN, we imaged pinholes with
different diameters (1, 2, and 3 mm), which
resulted in output images, each with a full width
at half maximum of 1.5, 1.4, and 2.5 mm, re-
spectively (fig. S8B). Our results also revealed
that the printed network can resolve a linewidth
of 1.8 mm at 0.4 THz (corresponding to a wave-
length of 0.75 mm in air), which is slightly worse
in resolution compared with the numerical test-
ing of ourD2NNdesign, where the network could
resolve a linewidth of ~1.2 mm (fig. S7C). This
experimental degradation in the performance
of the diffractive network can be due to factors
such as 3D-printing errors, potential misalign-
ments, and absorption-related losses in the 3D-
printed network (14).
Optical implementation of machine learning

in artificial neural networks is promising because
of the parallel computing capability and power ef-
ficiency of optical systems (22–24). Compared
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Fig. 2. Experimental testing of 3D-printed D2NNs. (A and B) After the training phase, the final designs of five different layers (L1, L2, …, L5) of the handwritten
digit classifier, fashion product classifier, and the imager D2NNs are shown.To the right of the network layers, an illustration of the corresponding 3D-printed D2NN
is shown. (C and D) Schematic (C) and photo (D) of the experimental terahertz setup. An amplifier-multiplier chain was used to generate continuous-wave
radiation at 0.4 THz, and a mixer-amplifier-multiplier chain was used for the detection at the output plane of the network. RF, radio frequency; f, frequency.
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with previous optoelectronics-based learning ap-
proaches (22, 25–27), the D2NN framework
provides a distinctive all-opticalmachine learning
engine that efficiently operates at the speed of light
using passive components and optical diffrac-
tion. An important advantage of D2NNs is

that they can be easily scaled up using various
high-throughput and large-area 3D-fabrication
methods (such as soft lithography and additive
manufacturing), as well as wide-field optical
components and detection systems, to cost-
effectively reach tens to hundreds of millions of

neurons and hundreds of billions of connec-
tions in a scalable and power-efficient manner.
For example, integration of D2NNs with lensfree
on-chip imaging systems (28, 29) could provide
extreme parallelism within a cost-effective and
portable platform. Such large-scale D2NNs may
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Fig. 3. Handwritten digit classifier
D2NN. (A) A 3D-printed D2NN
successfully classifies handwritten
input digits (0, 1, …, 9) on the
basis of 10 different detector
regions at the output plane of
the network, each corresponding
to one digit. As an example, the
output image of the 3D-printed
D2NN for a handwritten input of
“5” is demonstrated, where the
red dashed squares represent
the trained detector regions for
each digit. Other examples of
our experimental results are
shown in fig. S9. (B) Confusion
matrix and energy distribution
percentage for our experimental
results, using 50 different
handwritten digits (five for each
digit) that were 3D-printed,
selected among the images for
which numerical testing was
successful. (C) Same as (B),
except summarizing our numerical
testing results for 10,000 different
handwritten digits (~1000 for
each digit), achieving a classification
accuracy of 91.75% using a five-layer design. Our classification accuracy increased to 93.39% by increasing the number of diffractive layers
to seven, using a patch of two additional diffractive layers added to an existing and fixed D2NN (fig. S2).
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Fig. 4. Fashion product classifier
D2NN. (A) As an example, the
output image of the 3D-printed
D2NN for a sandal input (Fashion-
MNIST class 5) is demonstrated.
The red dashed squares represent
the trained detector regions for
each fashion product. Other
examples of our experimental
results are shown in fig. S10.
(B) Confusion matrix and energy
distribution percentage for our
experimental results, using
50 different fashion products
(five per class) that were
3D-printed, selected among
the images for which numerical
testing was successful. (C) Same
as (B), except summarizing our
numerical testing results for
10,000 different fashion products
(~1000 per class), achieving a
classification accuracy of 81.13%
using a five-layer design. By
increasing the number of diffractive
layers to 10, our classification accu-
racy increased to 86.60% (fig. S5).

A B C

1.0 cm0
Phase

Input Target (Sandal)

0 1 2

3 4 5 6

7 8 9

Output Distribution

Detector
Regions

Max Energy

D
et

ec
to

r 
R

eg
io

ns

0

1

2

3

4

5

6

7

8

9

9876543210
True Labels

P
re

di
ct

ed
La

be
ls

0

1

2

3

4

5

6

7

8

9

9876543210
Input Targets (#10,000)

Confusion Matrix

Energy Distribution (Percentage)

D
et

ec
to

r 
R

eg
io

ns

0

1

2

3

4

5

6

7

8

9

9876543210
True Labels

P
re

di
ct

ed
La

be
ls

0

1

2

3

4

5

6

7

8

9

9876543210
Input Targets (#50)

Confusion Matrix

Energy Distribution (Percentage) D
es

ig
ne

d

E
xp

er
im

en
ta

l

0.5 cm

2

RESEARCH | REPORT
D

ow
nloaded from

 https://w
w

w
.science.org at Z

hejiang U
niversity on M

ay 05, 2024



be transformative for various applications, includ-
ing image analysis, feature detection, and object
classification, and may also enable new micro-
scope or camera designs that can perform specific
imaging tasks using D2NNs. To achieve these new
technologies, nonlinear optical materials (14) and
amonolithicD2NNdesign that combines all layers
of the network as part of a 3D-fabricationmethod
would be desirable. Among other techniques,
laser lithography based on two-photon polym-
erization (30) can provide solutions for creating
such D2NNs.
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